Physics Colloquium

Thursday, 13 November 2025 | 17:00 – 18:00, Seminar Room 3rd Floor

How dendrites empower learning in biological and artificial brains

Panayiota Poirazi

Institute of Molecular Biology and Biotechnology (IMBB), FORTH

ABSTRACT

In this presentation I will discuss recent findings from my lab that highlight how dendrites can provide important benefits to both biological and artificial neural networks. I will start with an overview of key dendritic properties, including anatomical, biophysical and plasticity features and their impact on neuronal computations [1,2,3]. I will then discuss our latest experimental study, whereby we investigate the role of structural plasticity in dendrites -i.e., spine turnover dynamics- in learning a flexible behaviour in head-fixed mice. Finally, I will provide examples of how we use such dendritic properties to build Artificial Neural Networks with enhanced learning capabilities on image classification [4]. I will discuss how and why incorporating dendritic features in these models can lead to accurate and faster learning, resilience to overfitting and learning with orders of magnitude fewer trainable parameters.

References

- (1) Poirazi and Papoutsi, Nat. Rev. Neurosc., 2020
- (2) Makarov et al, Cur. Opinion in Neurobiol., 2023
- (3) Pagkalos et al, Cur. Opinion in Neurobiol., 2024
- (4) Chavlis and Poirazi, Nat. Communs., 2025