

University of Crete **Department of Physics**

Physics Colloquium

Thursday, 17 February 2022 | 17:00 – 18:00, Online with ZOOM

Non-Equilibrium Ultracold Quantum Matter: From Josephson Junctions to Universal Scaling laws

Prof. Nikolaos Proukakis

School of Mathematics, Statistics and Physics, Newcastle University, UK

ABSTRACT

Trapped quantum gases provide an excellent playground for studying macroscopic quantum coherence phenomena and scaling laws in a controlled manner. In this Colloquium I will focus on two specific scenarios in which numerical simulations provide fundamental understanding and critical insight into experiments: Firstly, I will discuss the emergent nonlinear dynamics and dissipation channels across an ultracold atomic Josephson junction, delineating the different dynamical regimes, and directly connecting microscopic features with macroscopic dissipative transport. Secondly, I will discuss controlled cooling quenches which lead to spontaneous emergence of local order, and the stochastic generation of defects during the crossing of a phase transition in both three and two dimensions: these will be characterised both within the framework of the well-known Kibble-Zurek paradigm (for finiteduration quenches), and the universality of late-time phase-ordering kinetics. The connection of ultracold atoms to 'atomtronic' quantum sensing devices will also be briefly touched upon in concluding remarks.

ZOOM Link: https://zoom.us/j/92355471983?pwd=cmJTNVVoVjE1L2VXNnNFalVqeWRBdz09