# Courses Catalogue

### Syllabus of the course: * Introduction to data science and machine learning *

In this web page we provide the syllabus of the course Introduction to data science and machine learning, offered by the Department of Physics.

The list of the courses offered during the current accademic year is available here.

The list of all courses offered by the Department of Physics is available here.

Code | Φ-252 |
---|---|

Type | C |

ECTS | 6 |

Hours | 4 |

Semester | Winter |

Instructor | P. Bonfini, G. Tsironis |

Program | Monday 18:00-20:00, Computer Room 2
Friday 17:00-20:00 Computer Room 3 |

Web page | |

Goal of the course | Data science deals with the huge flow of data generated in variety of disciplines and ranging from the internet, to biology to physics and astronomy. For instance, high energy physics experiments as well as astronomical observations can generate multiple terabytes of data per day and the analysis of these “big data” sets requires novel, efficient methods. Data science is an interdisciplinary field that unifies statistics, data analysis, machine learning and other related methods, in process of analyzing and understanding actual phenomena from data. Machine learning (ML) methods have recently played a very important role in making advances in data science. Deep Learning (DL), which is a sub-field of ML, has played a phenomenal role in making advances in many fields such as computer vision, speech recognition, machine translation, and robotics amongst other fields. In physics, ML and DL can detect and classify astronomical objects, track particles in detector arrays, and predict the state of complex, nonlinear dynamical systems. |

Syllabus | Unit 1: Python and Tensoflow for Data Science Week 1. Introduction. Mathematical prerequisites. Computation and Representation. Setting-up the computational environment: Introduction to Python. Week 2. Introduction to Python (II). Setting-up the “computational narrative”: How to use Jupyter Notebooks. Week 3. Hands-on Python projects (I). Accessing data-sources. Setting-up Keras and TensorFlow. Introduction to TensorFlow primitives. Week 4. Hands-on Python projects (II). Probability and Statistics in Data Science. Using Python and TensoFlow to learn fundamental statistical and probabilistic approaches to understand and gain insights from data. Unit 2: Machine and Statistical LearningWeek 5. The Fundamentals of Machine Learning: The ML Landscape, how to structure a ML project, Data Sources, Classification and Prediction. Training Models I: Linear Regression, Gradient Descent, Polynomial Regression. Week 6. Training Models II: Regularized Linear Models (Ridge Regression, Lasso Regression, Elastic Net, Early Stopping). Logistic Regression (Estimating Probabilities, Training and Cost Function, Decision Boundaries, Softmax Regression). Week 7. Support Vector Machines. Decision Trees. Ensemble Learning and Random Forests. Week 8. Dimensionality Analysis. Principal Components Analysis. Unit 3: Deep LearningWeek 9. Neural networks and deep learning. Deep learning primitives, architectures, and frameworks. Applications using TensorFlow. Week 10. Fully-connected deep networks. Training Deep Neural Nets (I). Week 11. Training Deep Neural Nets (II). Convolutional Neural Networks. Recurrent Neural Networks. Week 12. Autoencoders. Reinforcement Learning. The future of deep learning. Week 13. Submission of Final Project. |

Bibliography | Bibliography available online, as well as: 1. For Hands-on Machine Learning, Neural Networks and Deep Learning: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Geron (2017). 2. For a more thorough mathematical exposition (especially on the Deep Learning part): Deep Learning, by Goodfellow, Bengio and Courville (2016). |

- Department of Physics
- Education
- Personnel
- Sections
- Excellence
- Research News
- Publications
- Contact

- Announcements
- Colloquia
- Conferences
- Skinakas Observatory
- Institute of Theoretical and Computational Physics
- Crete Center for Theoretical Physics - CCTP
- Crete Center for Quantum Complexity and Nanotechnology - CCQCN
- Onassis Lectures
- International Prizes
- International Relations
- Computing Services
- Useful Links
- Visitor Information